Leucine biosynthesis in fungi: entering metabolism through the back door.

نویسنده

  • Gunter B Kohlhaw
چکیده

After exploring evolutionary aspects of branched-chain amino acid biosynthesis, the review focuses on the extended leucine biosynthetic pathway as it operates in Saccharomyces cerevisiae. First, the genes and enzymes specific for the leucine pathway are considered: LEU4 and LEU9 (encoding the alpha-isopropylmalate synthase isoenzymes), LEU1 (isopropylmalate isomerase), and LEU2 (beta-isopropylmalate dehydrogenase). Emphasis is given to the unusual distribution of the branched-chain amino acid pathway enzymes between mitochondrial matrix and cytosol, on the newly defined role of Leu5p, and on regulatory mechanisms governing gene expression and enzyme activity, including new evidence for the metabolic importance of the regulation of alpha-isopropylmalate synthase by coenzyme A. Next, structure-function relationships of the transcriptional regulator Leu3p are addressed, defining its dual role as activator and repressor and discussing evidence in support of the self-masking model. Recent data pointing at a more extended Leu3p regulon are discussed. An overview of the layered controls of the extended leucine pathway is provided that includes a description of the newly recognized roles of Ilv5p and Bat1p in maintaining mitochondrial integrity. Finally, branched-chain amino acid biosynthesis and its regulation in other fungi are summarized, the question of leucine as metabolic signal is addressed, and possible directions of future research in this area are outlined.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stereo-Specific Transcript Regulation of the Polyamine Biosynthesis Genes by Enantiomers of Ornithine in Tobacco Cell Culture

Background: Ornithine (Orn) plays an essential role in the metabolism of plant cells through incorporation in polyamines biosynthesis, the urea cycle and nitrogen metabolism. Physiological response of the plant cells to its two enantiomers have not been widely investigated yet.Objectives: This study aimed to evaluate effect of ornithine enantiomers on exp...

متن کامل

Cj1199 Affect the Development of Erythromycin Resistance in Campylobacter jejuni through Regulation of Leucine Biosynthesis

The aim of this study was to reveal the biological function of Cj1199 which was overexpressed in the laboratory induced erythromycin resistant strains. The Cj1199 deletion mutant (ΦCj1199) was constructed via insertional inactivation from its parent strain Campylobacter jejuni NCTC11168. The ΦCj1199 and NCTC11168 were then subjected to microarray and real-time PCR to find gene pathway of Cj1199...

متن کامل

Two Origins for the Gene Encoding α-Isopropylmalate Synthase in Fungi

BACKGROUND The biosynthesis of leucine is a biochemical pathway common to prokaryotes, plants and fungi, but absent from humans and animals. The pathway is a proposed target for antimicrobial therapy. METHODOLOGY/PRINCIPAL FINDINGS Here we identified the leuA gene encoding alpha-isopropylmalate synthase in the zygomycete fungus Phycomyces blakesleeanus using a genetic mapping approach with cr...

متن کامل

A Novel Antibiotic Mechanism of l-Cyclopropylalanine Blocking the Biosynthetic Pathway of Essential Amino Acid l-Leucine.

The unusual amino acid l-cyclopropylalanine was isolated from the mushroom Amanita virgineoides after detection in an anti-fungal screening test. l-Cyclopropylalanine was found to exhibit broad-spectrum inhibition against fungi and bacteria. The anti-fungal activity was found to be abolished in the presence of the amino acid l-leucine, but not any other amino acids, indicating that l-cyclopropy...

متن کامل

Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise.

High-performance physical activity and postexercise recovery lead to significant changes in amino acid and protein metabolism in skeletal muscle. Central to these changes is an increase in the metabolism of the BCAA leucine. During exercise, muscle protein synthesis decreases together with a net increase in protein degradation and stimulation of BCAA oxidation. The decrease in protein synthesis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Microbiology and molecular biology reviews : MMBR

دوره 67 1  شماره 

صفحات  -

تاریخ انتشار 2003